Customer Support & Sales
sales@testbank35.com
Working time
Available 24 x 7

Shop

Sale!

Solution Manual (Complete Download) for Modern Quantum Mechanics, 2/E, J. J. Sakurai, Jim J. Napolitano, ISBN-10: 0805382917, ISBN-13: 9780805382914, Instantly Downloadable Solution Manual, Complete (ALL CHAPTERS) Solution Manual

Authors:

J. J. Sakurai · Jim J. Napolitano


$100.00 $50.00

You can Pay with Your PayPal/Credit Cards directly.

Solution Manual for Modern Quantum Mechanics, 2/E, J. J. Sakurai, Jim J. Napolitano, ISBN-10: 0805382917, ISBN-13: 9780805382914

Download Sample
This product is purchased 59 times untill today 2020/12/01

Sales@TestBank35.com


Monday-Friday 8.00 to 23.00
Saturday 9.00 to 23.00
Sunday 10.00 to 23.00
Share the Product

Description

Downloadable Instructor’s Solution Manual for Modern Quantum Mechanics, 2/E, J. J. Sakurai, Jim J. Napolitano, ISBN-10: 0805382917, ISBN-13: 9780805382914, Instructor’s Solution Manual (Complete) Download

This is not an original TEXT BOOK (or Test Bank or original eBook). You are buying Solution Manual. A Solution Manual is step by step solutions of end of chapter questions in the text book. Solution manual offers the complete detailed answers to every question in textbook at the end of chapter. Please download sample for your confidential. All orders are safe, secure and confidential.

Table of Contents

1. Fundamental Concepts
1.1. The Stern-Gerlach Experiment
1.2. Kets, Bras, and Operators
1.3. Base Kets and Matrix Representations
1.4. Measurements, Observaables, and the Uncertainty Relations
1.5. Change of Basis
1.6. Position, Momentum, and Translation
1.7. Wave Functions in Position and Momentum Space
2. Quantum Dynamics
2.1. Time Evolution and the SchröDinger Equation
2.2. The SchröDinger Versus the Heisenberg Picture
2.3. Simple Harmonic Oscillator
2.4.  SchröDinger’s Wave Equation
2.5. Elementary Solutions to SchröDinger’s Wave Equation
2.6. Propogators and Feynman Path Integrals
2.7. Potentials and Gauge Transformations
3. Theory of Angular Momentum
3.1. Rotations and Angular Momentum Commutation Relations
3.2. Spin 1
3.3. SO(e), SU(2), and Euler Rotations
3.4. Density Operators and Pure Versus Mixed Ensembles
3.5 Eigenvalues and Eigenstates of Angular Momentum
3.6. Orbital Angular Momentum
3.7. SchröDinger’s Equation for Central Potentials
3.8 Addition of Angular Momenta
3.9. Schwinger’s Oscillator Model of Angular Momentum
3.10. Spin Correlation Measurements and Bell’s Inequality
3.11. Tensor Operators
4. Symmetry in Quantum Mechanics
4.1. Symmetries, Conservation Laws, and Degeneracies
4.2. Discrete Symmetries, Parity, or Space Inversion
4.3. Lattice Translation as a Discrete Symmetry
4.4. The Time-Reversal Discrete Symmetry
5. Approximation Methods
5.1. Time-Independent Perturbation Theory: Nondegenerate Case
5.2. Time-Independent Perturbation Theory: The Degenerate Case
5.3. Hydrogenlike Atoms: Fine Structure and the Zeeman Effect
5.4. Variational Methods
5.5. Time-Depedent Potentials: The Interaction Picture
5.6. Hamiltonians with Extreme Time Dependence
5.7. Time-Dependent Perturbation Theory
5.8. Applications to Interactions with the Classical Radiation Field
5.9 Energy Shift and Decay Width
6. Scattering Theory
6.1. Scattering as a Time-Dependent Perturbation
6.2 The Scattering Amplitude
6.3. The Born Approximation
6.4. Phase Shifts and Partial Waves
6.5. Eikonal Approximation
6.6. Low-Energy Scattering and Bound States
6.7. Resonance Scattering
6.8. Symmetry Considerations in Scattering
6.9 Inelastic Electron-Atom Scattering
7. Identical Particles
7.1. Permutation Symmetry
7.2. Symmetrization Postulate
7.3. Two-Electron System
7.4. The Helium Atom
7.5. Multi-Particle States
7.6. Quantization of the Electromagnetic Field
8. Relativistic Quantum Mechanics 331
8.1. Paths to Relativisitic Quantum Mechanics
8.2. The Dirac Equation
8.3. Symmetries of the Dirac Equation
8.4. Solving with a Central Potential
8.5. Relativistic Quantum Field Theory
Appendices
A. Electromagnetic Units
A.1. Coulomb’s Law, Charge, and Current
A.2. Converting Between Systems
B. Brief Summary of Elementary Solutions to ShröDinger’s Wave Eqation
B.1. Free Particles (V=0)
B.2. Piecewise Constatn Potentials in One Dimension
B.3. Transmission–Reflection Problems
B.4. Simple Harmonic Oscillator
B.5. The Central Force Problem (Spherically Symmetrical Potential V=V(r)]
B.6. Hydrogen Atom.