Customer Support & Sales
Working time
Available 24 x 7



Solution Manual (Complete Download) for Fluid Mechanics, Russell C. Hibbeler, ISBN-10: 0132777622, ISBN-13: 9780132777629, ISBN-10: 0133770001, ISBN-13: 9780133770001, Instantly Downloadable Solution Manual, Complete (ALL CHAPTERS) Solution Manual

$100.00 $50.00

Solution Manual for Fluid Mechanics, Russell C. Hibbeler, ISBN-10: 0132777622, ISBN-13: 9780132777629, ISBN-10: 0133770001, ISBN-13: 9780133770001

Share the Product


Downloadable Instructor’s Solution Manual for Fluid Mechanics, Russell C. Hibbeler, ISBN-10: 0132777622, ISBN-13: 9780132777629, ISBN-10: 0133770001, ISBN-13: 9780133770001, Instructor’s Solution Manual (Complete) Download

This is not an original TEXT BOOK (or Test Bank or original eBook). You are buying Solution Manual. A Solution Manual is step by step solutions of end of chapter questions in the text book. Solution manual offers the complete detailed answers to every question in textbook at the end of chapter. Please download sample for your confidential. All orders are safe, secure and confidential.

Table of Contents

FLUID    MECHANICS      R.C. Hibbeler

Chapter 1

Fundamental Concepts

1-1.  Introduction

1-2. Characteristics of Matter

1-3. Systems of Units

1-4.  Calculations

1-5. Problem Solving

1-6.  Basic Fluid Properties

1-7. Viscosity

1-8 Viscosity Measurement

1-9. Vapor Pressure

1-10. Surface Tension and Capillarity

Chapter 2

Fluid Statics

2—1. Pressure

2-2. Absolute and Gage Pressure

2-3. Static Pressure Variation

2-4. Pressure Variation for Incompressible

2-5. Pressure Variation for Compressible Fluids

2-6. Measurement of Static Pressure

2-7. Hydrostatic Forces on Plane Surfaces

2-8. Hydrostatic Forces on an Incline Plane or Curved Surface

Determined by Projection

2-9. Buoyancy

2-10. Stability

2-11. Constant Accelerated Translation of a Liquid

2-12. Steady Rotation of a Liquid.

Chapter 3

Kinematics of Fluid Motion

3-1. Types of Flow Description

3-2. Types of Fluid Flow

3-3. Graphical Descriptions of Fluid Flow

3-4. Fluid Acceleration

3-5 Streamline Coordinates

3-6. The Reynolds Transport Theorem

Chapter 4

Conservation of Mass

4-1. Rate of Flow and Average Velocity

4-2. Continuity Equation

Chapter 5

Energy of Moving Fluids

5-1. Euler’s Equations of Motion

5-2. The Bernoulli Equation

5-3. Applications of Bernoulli’s Equation

5-4.Energy and the Hydraulic Gradient.

5-5. The Energy Equation

Chapter 6

Fluid Momentum

6-1. The Linear Momentum Equation

6-2. The Angular Momentum Equation

6-3. Propellers

6-4. Applications for Control Volumes Having Rectilinear Accelerated Motion

6-5. Turbojets

6-6. Rockets

Chapter 7

Differential Fluid Flow

7-1. Differential Analysis

7-2. Kinematics of Differential Fluid Elements

7-3. Circulation and Vorticity

7-4. Conservation of Mass

7-5. Equations of Motion of a Fluid Particle

7-6. The Euler and Bernoulli Equations

7-7. The Stream Function

7-8. The Potential Function

7-9. Basic Two-Dimensional Flows

7-10.  Superposition of Flows

7-11. The Navier-Stokes Equations

7-12. Computational Fluid Dyanmics

Chapter 8

Dimensional Analysis and Similitude

8-1. Dimensional Analysis

8-2. Important Dimensionless Numbers

8-3. The Buckingham Pi Theorem

8-4. Similitude

Chapter 9

Viscous Flow Within Enclosed Surfaces

9-1.  Steady Laminar Flow between Parallel Plates

9-2. Navier-Stokes Solution for Steady Laminar Flow Between Parallel Plates

9-3. Steady Laminar Flow Within A Smooth Pipe

9-3. Laminar and Turbulent Shear Stress Within a Smooth Pipe

9-4. Navier-Stokes Solution for Steady Laminar Flow Within a Smooth Pipe

9-5. The Reynolds Number

9-6. Laminar and Turbulent Shear Stress Within a Smooth Pipe

9-7. Fully Developed Flow From an Entrance

9-8. Turbulent Flow Within a Smooth Pipe

Chapter 10

Analysis and Design for Pipe Flow

10-1. Resistance to Flow in Rough Pipes

10-2. Losses Occurring From Pipe Fittings And Transitions

10-3. Single Pipeline Flow

10-4. Pipe Systems

10-5. Flow Measurement

Chapter 11

Viscous Flow Over External Surfaces

11—1 The Concept of the Boundary Layer

11—2.  Laminar Boundary Layers

11—3 The Momentum Integral Equation

11—4 Turbulent Boundary Layers

11-5. Laminar and Turbulent Boundary Layers

11-6. Drag and Lift

11-7. Pressure Gradient Effects

11-8. The Drag Coefficient

11-9. Methods for Reducing Drag

11—10. Lift and Drag on an Airfoil

Chapter 12


12-1. Types of Turbomachines

12—2. Axial-Flow Pumps

12—3. Ideal Performance for Axial-Flow Pumps

12—4. Radial-Flow Pumps

12—5. Turbines

12-6. Pump Performance

12—7. Cavitation and Net Positive Suction Head

12-8. Pump Selection Related to the Flow System

12-9.Turbomachine Similitude

Chapter 13

Open Channel Flow

13—1. Types of Flow in Open Channels

13-2. Wave Celerity

13-3. Specific Energy

13—4. Open Channel Flow Over a Rise

13—5. Open Channel Flow Through a Sluice Gate

13-6. Steady Uniform Channel Flow

13-7. Gradual Flow With Varying Depth

13— 8.  The Hydraulic Jump

13-9. Weirs

Chapter 14

Compressible Flow

14—1. Thermodynamic Concepts

14—2. Wave Propagation Through a Compressible Fluid

14—3. Types of Compressible Flow

14—4. Isentropic Stagnation Properties

14—5. Isentropic Flow Through a Variable Area

14—6. Isentropic Flow Through Converging and Diverging Nozzles

14—7. Normal Shock Waves

14—8. Shock Waves in Nozzles

14-9. Oblique Shocks

14-10. Compression and Expansion Waves

14-11. Compressible Flow Measurement