## Description

**Downloadable Instructor’s Solution Manual for Differential Equations and Linear Algebra, 2/E, Jerry Farlow, James E. Hall, Jean Marie McDill, Beverly H. West, ISBN-10: 0131860615, ISBN-13: 9780131860612, Instructor’s Solution Manual (Complete) Download**

**This is not an original TEXT BOOK (or Test Bank or original eBook). You are buying Solution Manual. A Solution Manual is step by step solutions of end of chapter questions in the text book. Solution manual offers the complete detailed answers to every question in textbook at the end of chapter. Please download sample for your confidential.Â All orders are safe, secure and confidential.**

Table of Contents

1 First-Order Differential Equations

1.1 Dynamical Systems: Modeling 1

1.2 Solutions and Direction Fields: Qualitative Analysis 11

1.3 Separation of Variables: Quantitative Analysis 25

1.4 Approximation Methods: Numerical Analysis 33

1.5 Picardâ€™s Theorem: Theoretical Analysis 46

2 Linearity and Nonlinearity

2.1 Linear Equations: The Nature of Their Solutions 55

2.2 Solving the First-Order Linear Differential Equation 63

2.3 Growth and Decay Phenomena 73

2.4 Linear Models: Mixing and Cooling 80

2.5 Nonlinear Models: Logistic Equation 87

2.6 Systems of Differential Equations: A First Look 100

3 Linear Algebra

3.1 Matrices: Sums and Products 115

3.2 Systems of Linear Equations 130

3.3 The Inverse of a Matrix 146

3.4 Determinants and Cramerâ€™s Rule 156

3.5 Vector Spaces and Subspaces 167

3.6 Basis and Dimension 177

4 Higher-Order Linear Differential Equations

4.1 The Harmonic Oscillator 195

4.2 Real Characteristic Roots 210

4.3 Complex Characteristic Roots 229

4.4 Undetermined Coefficients 244

4.5 Variation of Parameters 255

4.6 Forced Oscillations 261

4.7 Conservation and Conversion 274

5 Linear Transformations

5.1 Linear Transformations 285

5.2 Properties of Linear Transformations 300

5.3 Eigenvalues and Eigenvectors 311

5.4 Coordinates and Diagonalization 327

6 Linear Systems of Differential Equations

6.1 Theory of Linear DE Systems 343

6.2 Linear Systems with Real Eigenvalues 357

6.3 Linear Systems with Nonreal Eigenvalues 372

6.4 Stability and Linear Classification 384

6.5 Decoupling a Linear DE System 394

6.6 Matrix Exponential 400

6.7 Nonhomogeneous Linear Systems 410

7 Nonlinear Systems of Differential Equations

7.1 Nonlinear Systems 421

7.2 Linearization 431

7.3 Numerical Solutions 441

7.4 Chaos, Strange Attractors, and Period Doubling 449

7.5 Chaos in Forced Nonlinear Systems 456

8 Laplace Transforms

8.1 The Laplace Transform and Its Inverse 467

8.2 Solving DEs and IVPs with Laplace Transforms 475

8.3 The Step Function and the Delta Function 485

8.4 The Convolution Integral and the Transfer Function 499

8.5 Laplace Transform Solution of Linear Systems 509

9 Discrete Dynamical Systems

9.1 Iterative Equations 517

9.2 Linear Iterative Systems 530

9.3 Nonlinear Iterative Equations: Chaos Again 542

10 Control Theory

10.1 Feedback Controls 557

10.2 Introduction to Optimal Control 567

10.3 Pontryagin Maximum Principle 579